

Unity を活用した科学衛星観測データの 3 次元可視化ツールの開発

#慈道 楓真¹⁾, 笠原 穎也²⁾, 松田 昇也³⁾
(¹ 金沢大学, ² 金沢大学, ³ 金沢大学)

Development of a Unity-based 3D Visualization Tool for Scientific Satellite Observation Data

#Fuma Jido¹⁾, Yoshiya KASAHARA²⁾, Shoya MATSUDA³⁾
(¹ Kanazawa University, ² Kanazawa University, ³ Kanazawa University)

Plasma wave and plasma particle data observed by scientific satellites are typically multi-dimensional. For instance, in plasma wave observations, the power spectral density is represented in two dimensions: time and frequency. To analyze spatial distribution, the satellite location must be considered as an additional dimension. For more detailed analysis, the dataset becomes more complex, as it is essential to examine dependencies on parameters such as season, solar activity, and geomagnetic indices. In order to analyze such multi-dimensional datasets effectively, adding several limiting constraints and/or dimensionality reduction are typically applied. However, it is difficult to visualize the overall picture of plasma wave activity because it requires many figures.

In this study, we developed a Unity-based visualization software to visualize plasma wave activity in a virtual reality (VR) environment using data measured by scientific satellites. By using VR goggles, the software enables visualization of spatial wave activity from any angle and allows interactive modification of analysis conditions, thereby enabling the immediate visualization of a huge observed dataset.

In this presentation, we introduce the technique for visualizing the spatial distribution of plasma wave electric power spectral density (OFA-SPEC) data measured by the Arase/PWE from 2017 to 2023.

科学衛星によって観測されたプラズマ波動やプラズマ粒子の特性解析では、しばしば多次元のデータセットを取り扱う。例えばプラズマ波動観測の場合は、時刻と周波数の 2 次元でパワースペクトル密度を表現することが多く、これに空間の次元が加わる。より詳細な解析には、季節や太陽活動度、磁気擾乱度などとの依存性の調査が重要であり、それらを加えるとデータセットはさらに複雑化する。これらを効果的に解析するために、解析条件を限定する操作や、多次元からなるデータから特定の次元を切り出す操作を行うことが一般的である。しかしながら、全体の様子を俯瞰するには膨大な数の図を比較することとなり、直感的に理解しやすい全体像を可視化することは困難であった。

そこで我々は、ゲームエンジン Unity を活用して、科学衛星によるプラズマ波動観測データを VR 空間に描画し、その全体像を可視化するソフトウェアを開発した。本ソフトウェアでは、VR ゴーグルを活用することで、現象の空間分布をあらゆる角度から観察することを可能とともに、解析条件をインタラクティブに変更可能とすることで、大規模な観測データを即座に可視化することを可能とした。

本発表では、あらせ衛星に搭載されたプラズマ波動・電場観測器 (PWE) で観測された 2017 年から 2023 年までの電界パワースペクトル密度データ (OFA-SPEC) を用い、プラズマ波動現象の空間的な強度分布を可視化する手段を述べる。