

**R011-16**  
C 会場 : 11/25 AM1 (9:15-10:45)  
9:45~10:00:00

## 研究データにつながる学術情報オブジェクト ID の将来像について

#村山 泰啓<sup>1,3)</sup>, 宮入 暁子<sup>2,3,4)</sup>

(<sup>1</sup> 京都大学附属図書館研究開発室, (<sup>2</sup> 学術情報コンサルタント, (<sup>3</sup> 国立研究開発法人情報通信研究機構, (<sup>4</sup> 東京科学大学

## Future perspective of scholarly information objects connected to research data

#Yasuhiro Murayama<sup>1,3)</sup>, Miyairi Nobuko<sup>2,3,4)</sup>

(<sup>1</sup> Research and Development Laboratory, Kyoto University Library, Kyoto University, (<sup>2</sup>Scholarly information consultant,

(<sup>3</sup>NICT Knowledge Hub, National Institute of Information and Communications Technology, (<sup>4</sup>Institute of Science Tokyo

In the scientific research system, there are various scholarly information objects, including research data, papers, analysis software, and physical samples; furthermore, within the research process itself, various information such as researchers, affiliated institutions, projects, and research budgets are interconnected, forming the overall academic system and processes. Persistent Identifiers (PIPs) are designed to sustainably refer to such digital resources and can, together with machine-readable metadata as important as the IDs themselves, indicate the interrelationships of all the aforementioned research-related information. PIPs are discussed as enablers of automatic referencing between systems, reduce the input burden for researchers and institutions, enhance the visibility of research achievements and others, facilitate machine-readable integration (including with AI). So that it is expected to enable more enhanced accessibility to, and trustworthy evaluation and analysis of, various research outcomes and research-related information. Thereby significantly transforming is expected of the modes of scholarly information utilization and circulation. Similar to the early stages of Open Science's progress in past, these discussions on the benefits are not yet widely known necessarily in the research community. However, it would be desirable for science communities in Japan to discuss about possibility and understanding of such future concepts in parallel to the international activity, which are advancing in the international expert community.

研究システムにおいては多様な学術情報オブジェクトがあり、研究データ、論文、解析ソフトウェア、物理サンプル、さらに研究プロセスにおいては研究者、所属機関、プロジェクト、研究予算などの多様な情報オブジェクトが相互に研究活動そのものから、その為の所属・予算獲得等が相互に関連して全体の学術システムをなす。永続的識別子 (PID) は、デジタル資源を持続的に参照し、ID と同様かそれ以上に重要な「機械可読なメタデータ」とセットになり、前述の研究関連情報すべての相互関係性を示すことができる。システム間の自動参照、研究者や機関の入力負担の軽減、学術情報の可視性を向上させ、PID は AI をふくむ機械可読な統合を促進し、研究成果の正確な評価・分析を可能にし、学術情報の利用と流通様態を大きく変革するとも言われる。オープンサイエンスの創成期と同様、現状では研究者コミュニティの中ではこうした状況はあまり知られているとは言えない状態であるが、国際的に活発な議論や実験が進展しているこうした将来構想の潮流は、我が国でも科学に関わるコミュニティにおいて議論を進めておくことが望ましいのではないだろうか。