

BepiColombo/MMO衛星のための統合データアーカイブの開発

#堀智昭¹⁾, 三好由純²⁾, Jun ChaeWoo³⁾, 新堀淳樹²⁾, 北村成寿²⁾, 山本和弘⁴⁾, 千葉翔太²⁾, 濑川朋紀⁵⁾, 松田昇也⁶⁾, 村上真也⁷⁾, 相澤紗絵⁸⁾, 原田裕己⁹⁾, 篠原育⁷⁾, 浅村和史⁷⁾, 村上豪⁷⁾, 原拓也¹⁰⁾

(¹名大宇地研, ²名古屋大学, ³Nagoya University, ⁴名古屋大学宇宙地球環境研究所, ⁵名古屋大学全学技術センター, ⁶金沢大学, ⁷宇宙航空研究開発機構, ⁸LPP, ⁹CNRS, ¹⁰京都大学, ¹⁰University of California, Berkeley)

Development of an integrated data archive for the BepiColombo/MMO satellite

#Tomoaki Hori¹⁾, Yoshizumi MIYOSHI²⁾, Chaewoo JUN³⁾, Atsuki SHINBORI²⁾, Naritoshi KITAMURA²⁾, Kazuhiro YAMAMOTO⁴⁾, Shota CHIBA²⁾, Tomonori Segawa⁵⁾, Shoya MATSUDA⁶⁾, Shin-ya MURAKAMI⁷⁾, Sae AIZAWA⁸⁾, Yuki HARADA⁹⁾, Iku SHINOHARA⁷⁾, Kazushi ASAMURA⁷⁾, Go MURAKAMI⁷⁾, Takuya HARA¹⁰⁾

(¹Institute for Space-Earth Environmental Research, Nagoya University, ²Nagoya University, ³Nagoya University,

⁴Institute for Space-Earth Environmental Research, Nagoya University, ⁵Technical Center of Nagoya University,

⁶Kanazawa University, ⁷Japan Aerospace Exploration Agency, ⁸LPP, CNRS, ⁹Kyoto University, ¹⁰University of California, Berkeley

The Center for Heliospheric Science (CHS), operated by the Institute for Space-Earth Environmental Research (ISEE) of Nagoya University, Japan Aerospace Exploration Agency (JAXA), and the National Astronomical Observatory of Japan (NAOJ), has been developing a science data archive for the Mercury Magnetospheric Orbiter (MMO, also known as Mio) spacecraft of the BepiColombo mission. The BepiColombo mission largely consists of two phases: the cruise phase and the Mercury phase. During the former phase since its launch in 2018, the spacecraft has been traveling on its way to Mercury. Some scientific instruments onboard made observations mainly during the flybys around Earth, Venus, and Mercury, although they have significant limitations in their fields of view and sensitivities. After the final orbit insertion around Mercury at the end of 2026, the Mercury phase is going to start with fully deployed and functional instruments. In terms of scientific data archive, during the cruise phase, several data products from instruments operated for limited periods are released primarily to the project members as Level-2pre data. In the meantime, we also work on development and preparation for the full set of Level-2 data products that will be routinely generated and made available to the public with some latency once the Mercury phase gets under way. One of the biggest challenges for us is to build a data archive that is compliant with the standards of National Aeronautics and Space Administration (NASA) Planetary Data System version 4 (PDS4). In addition to the PDS archive, we plan to develop and maintain another, rather conventional data archive in parallel that can be accessed by data users through the space physics environment data analysis system (SPEDAS). We therefore need special consideration in developing both data files and archives to allow us to ingest data files and metadata into both archives as efficiently and automatically as possible so that the data archives can be maintained with the least manual effort. This year, we have made the first release of a level-2pre product containing Solar Particle Monitor (SPM) data. More Level-2pre data products are currently in preparation, to be out later in this fiscal year 2025. We have also developed an experimental version of PDS labels (metadata required in a PDS archive) and their generation pipeline for Level-2 data products. In the presentation, we describe the latest status of our development and data release, and discuss their future perspective as well as some lessons learned obtained from our trial and error.

名古屋大学宇宙地球環境研究所、宇宙航空研究開発機構、および国立天文台によって共同運用されている太陽圏サイエンスセンター (Center for Heliospheric Science; CHS) は、日欧共同の水星探査ミッションである BepiColombo ミッションで運用されている Mercury Magnetospheric Orbiter (MMO, 別名 Mio) の科学データアーカイブの開発を行っている。BepiColombo ミッションは大きく分けて、水星に向かうクルージング・フェーズ (the cruise phase) と、2026 年末の水星軌道投入後の水星観測フェーズ (the Mercury phase) の 2 つから構成される。2018 年の打ち上げから続くクルージング・フェーズ中でも、MMO 衛星は幾つかの観測を用いて地球、金星、水星フライバイの時を中心に観測が行ってきたが、観測器の視野や感度について大きな制約がかかっている。一方水星軌道投入後は全観測器を用いたフルスペックの観測が行われる予定である。データ・アーカイブの観点で言うと、クルージング・フェーズ中は幾つかの観測が取得したデータを Level-2pre データとしてプロジェクトメンバー向けに公開する。またその間に Level-2 データの開発と準備を行い、水星観測フェーズが始まったら、ある程度の待ち時間後に全データが順次生成され、全科学コミュニティに向けて公開される。我々にとってもっとも挑戦的なことの 1 つは、アメリカ航空宇宙局 (NASA) が提唱する Planetary Data System version 4 (PDS4) というデータアーカイブ標準に準拠したデータアーカイブを構築することである。太陽圏サイエンスセンターでは、さらにこれと並行して、太陽地球系科学コミュニティで広く利用されている統合データ解析ツール the space physics environment data analysis system (SPEDAS) からアクセスできるような、従来型のデータアーカイブをもう 1 つ準備して、PDS4 アーカイブと同時に維持・公開していくことを計画している。これらのアーカイブを開発する際には設計を熟慮し、実際の運用時に手動的な作業を最小限にして、この 2 つのデータアーカイブに可能な限り自動的かつ効率的にデータファイルを流し込めるようにする必要がある。今年度は、機上の放射線モニターである Solar Particle

Monitor (SPM) の Level-2pre データを初めて公開した。今年度中に、続いて幾つかの Level-2pre データセットが公開される予定である。また PDS ラベル (PDS アーカイブで要求されるメタデータ) ファイルと、それを自動生成するパイプラインの試作を行った。発表では、MMO 衛星データアーカイブ開発の現状と将来の展望について紹介し、またこれまで開発から得られた lessons learned についても議論したい。