

R011-10

C会場：11/24 PM2 (16:05-18:05)
16:50～17:05:00

気象庁地磁気観測所におけるデータ利活用の現状と課題

#浅利 晴紀¹⁾, 長町 信吾¹⁾, 森永 健司¹⁾

(¹ 気象庁地磁気観測所)

Current status and challenges for data utilization at Kakioka Magnetic Observatory

#Seiki Asari¹⁾, Shingo Nagamachi¹⁾, Kenji Morinaga¹⁾

(¹ Kakioka Magnetic Observatory, Japan Meteorological Agency)

Kakioka Magnetic Observatory has acquired continuous magnetic data on the Earth's electromagnetic field in Japan for over a century. Since 2013, it has been publishing definitive data and catalogued information on its own repository (<https://www.kakioka-jma.go.jp/obsdata/metadata/en/products>). These data are widely recognized for their high quality and have met the needs of various research fields in SGEPPSS. In recent years, we have been working to promote the digital utilization of historical observation data and their meta-information, as well as to improve their real-time distribution system. Progress and results have already been reported on several occasions (Asari et al. 2021, Asari and Nagamachi 2022).

This presentation will introduce the status of the following two points.

(1) Data utilization status

We will report on the results of a survey of the number of citations using DOI for the 73 datasets registered at our observatory in January 2022. In particular, we will present the current situation where the number of citations has been stagnant over the past three years (e.g., the number of citations for Kakioka geomagnetic 1-second value 10.48682/186bd.58000 searched on Google Scholar is only three) as an issue and discuss ways to promote future utilization.

(2) Attempts at automating the data processing (under the support by ROIS-DS-JOINT programs 052RP2023 and 043RP2025)

With the increasing need for immediate information on geomagnetic disturbances, we will report on our efforts to extract short-period geomagnetic phenomena in near real time. In particular, we will discuss preliminary survey results on the development of machine learning models for reading K-index values and detecting geomagnetic storms (and extracting their parameters), as well as the issues that have emerged from these efforts. The determination of geomagnetic storms requires the skilled experience and reading techniques of observatory staff, and at present, there are no reports of effective model development in other countries. This is due to the low frequency of occurrence of the phenomenon and the lack of data necessary for learning. In the future, overcoming this data shortage will be an important research issue.

気象庁地磁気観測所は、百年以上にわたり日本における地球電磁気の基準データを取得してきた。2013年以降は、独自のリポジトリ「デジタルデータサービス (<https://www.kakioka-jma.go.jp/obsdata/metadata/ja>)」にて、確定データおよびカタログ化された情報を公開している。

これらのデータは、品質の高さが広く知られており、SGEPSSにおける多様な研究分野のニーズに応えてきた。近年、当観測所では、歴史的観測データおよびメタ記録のデジタル利活用の促進、ならびにリアルタイム情報の即時提供システムの改善に取り組んでおり、その進捗と成果については既に複数回報告している（浅利ほか 2021、浅利・長町 2022）。

本講演では、以下の二点について現状を紹介する。

① データ利用状況

2022年1月に登録作業が完了した当観測所のデータセット（全73種）について、DOIによる被引用数の調査結果を報告する。特に、過去3年間で引用数が伸び悩んでいる現状（例：Google Scholarで検索される柿岡地磁気毎秒値10.48682/186bd.58000の引用件数は3件）を課題として提示し、今後の利活用促進に向けた議論を行う。

② データ処理の自動化の試み（ROIS-DS-JOINT 課題 052RP2023 と 043RP2025 に基づく）

地磁気擾乱に関する即時情報提供へのニーズが高まる中、準リアルタイムで地磁気の短周期現象を抽出する取り組みについて報告する。特に、K指数の読み取りや地磁気嵐の検出（およびその諸元の抽出）における機械学習モデルの開発に関する予備的な調査結果と、そこから見えてきた課題について議論する。

地磁気嵐の判定には、観測所職員による熟練した経験と読み取り技術が不可欠であり、現時点では他国でも有効なモデル開発の報告は見られない。その背景には、現象の発生頻度が低く、学習に必要なデータが不足しているという課題がある。今後は、このデータ不足をいかに克服するかが、重要な研究課題となる。