

R009-11

A会場：11/24 PM2 (16:05-18:05)

16:35~16:50:00

太陽活動度変化に伴う月面からの光電子放出の変動

#加藤 正久¹⁾, 原田 裕己¹⁾, Shaosui Xu²⁾, Andrew R. Poppe²⁾, Jasper S. Halekas³⁾

(¹ 京都大学, ² カリフォルニア大学バークレー校, ³ アイオワ大学)

Variations of photoelectron emission from the lunar surface with solar activity

#Masahisa Kato¹⁾, Yuki HARADA¹⁾, Shaosui Xu²⁾, Andrew R. Poppe²⁾, Jasper S. Halekas³⁾

(¹Graduate School of Science, Kyoto University, ²University of California, Berkeley, ³University of Iowa)

Since the Moon does not possess a dense atmosphere and a global magnetic field, the lunar surface directly interacts with its ambient charged particles. The imbalance between incoming and outgoing charged particles leads to surface charging. The lunar surface charging affects the motion of charged particles and the dust grains on the surface. Since the electrostatically lofted dust can be a hazard to future exploration, it is essential to determine the temporal and spatial distributions of the lunar surface potential. On the dayside lunar surface, photoelectron emission is dominant in interactions related to these charged particles. The characteristics of photoelectron emission depend on solar irradiation, which in turn is influenced by solar activity. However, it remains unclear how the energy spectra of photoelectrons vary with different levels of solar activity. We use a numerical model of photoelectron energy spectra emitted from the lunar surface and electron observations near the dayside lunar surface. First, we compare the model with ARTEMIS observations to constrain the free parameter in the model. Then we present variations in photoelectron energy spectra during solar minimum, solar maximum, and flare events. Our results show that larger fluxes of photoelectrons with higher energies are emitted from the surface under high solar activity conditions. We also discuss the implications for variations in lunar surface potential depending on the solar activity.

月は濃密な大気と全球的な磁場を持たない天体であるため、月面は周辺の荷電粒子と直接的に相互作用する。流入する荷電粒子による電流が平衡となるように、月面の電位が変化する月面帯電が生じる。月面帯電は周辺の荷電粒子や表面のダスト粒子の運動に影響を与える。静電的な力によって浮揚したダストは将来の月面探査におけるリスクにもなるため、月面電位の時空間分布を決定することは重要な課題である。太陽光の当たる昼側の月面では、荷電粒子に関連する相互作用において光電子の放出が支配的である。光電子放出の特性は太陽放射に依存している。しかしながら、光電子のエネルギースペクトルが太陽活動度に応じてどのように変化するかについては理解が進んでいない。私たちは月面から放出される光電子のエネルギースペクトルの数値モデルと昼側月面付近での電子観測を用いる。最初に、月探査機ARTEMISの観測からモデル中のフリーパラメータを制約する。これを踏まえて太陽活動極小期、極大期、フレトイベントのそれぞれにおける光電子エネルギースペクトルの変化を示す。高い太陽活動度の際により高いエネルギーの光電子のフラックスが増加することがわかった。また、太陽活動に依存した月面電位の変化の可能性についても考察する。