

R009-02

A会場：11/24 PM1 (13:45-15:45)
14:00～14:15:00

BepiColombo/Mio 搭載 MPPE による第4回・第6回水星フライバイ時の水星磁気圏観測

#齋藤 義文¹⁾, HADID Lina²⁾, DELCOURT Dominique²⁾, ANDRE Nicolas³⁾, 平原 聖文⁴⁾, BARABASH Stas⁵⁾, 原田 裕己⁶⁾, 横田 勝一郎⁷⁾, 相澤 紗絵⁸⁾, ROJO Mathias³⁾, 浅村 和史⁹⁾, 二穴 喜文¹⁰⁾, 高島 健⁹⁾

(¹ 宇宙研, ²LPP, ³IRAP, ⁴ 名古屋大学, ⁵IRF, ⁶ 京都大学, ⁷ 大阪大学大学院, ⁸ LPP, ⁹ CNRS, ¹⁰ 宇宙航空研究開発機構, ¹⁰ Swedish Inst. of Space Physics (IRF)

Observation of Mercury Magnetosphere During Mercury Flyby #4 and #6 by MPPE on BepiColombo/Mio

#Yoshifumi Saito¹⁾, Lina HADID²⁾, Dominique DELCOURT²⁾, Nicolas ANDRE³⁾, Masafumi HIRAHARA⁴⁾, Stas BARABASH⁵⁾, Yuki HARADA⁶⁾, Shoichiro YOKOTA⁷⁾, Sae AIZAWA⁸⁾, Mathias ROJO³⁾, Kazushi ASAMURA⁹⁾, Yoshifumi FUTAANA¹⁰⁾, Takeshi TAKASHIMA⁹⁾

(¹Institute of Space and Astronautical Science / Japan Aerospace Exploration Agency, (²LPP, (³IRAP, (⁴Nagoya University, (⁵IRF, (⁶Kyoto University, (⁷Osaka University, (⁸LPP, CNRS, (⁹JAXA, (¹⁰IRF

BepiColombo Mio will arrive at Mercury in November 2026, after nearly 8 years' journey. To date, BepiColombo has completed six Mercury flybys. The first, second, third, fourth and sixth Mercury flybys were on 1 October 2021, 23 June 2022, 19 June 2023, 4 September 2024, and 8 January 2025, respectively. During the 4th flyby, BepiColombo approached Mercury's magnetosphere from the dusk-side northern part of the magnetotail, crossed the low-altitude regions in the dawn-side equatorial region with the closest approach altitude of about 165km and exited the magnetosphere at the dawn-side southern hemisphere. During the 6th flyby, BepiColombo approached Mercury's magnetosphere from the southern part of the magnetotail, crossed the low-altitude regions almost along the noon-midnight meridian with the closest approach altitude of about 295km and exited the magnetosphere at the dayside northern hemisphere.

The Mercury Plasma/Particle Experiment (MPPE) is a comprehensive instrument package on BepiColombo/Mio space-craft for plasma, high-energy particle and energetic neutral atom measurements. It consists of 7 sensors: two Mercury Electron Analyzers (MEA1 and MEA2), Mercury Ion Analyzer (MIA), Mass Spectrum Analyzer (MSA), High Energy Particle instrument for electron (HEP-ele), High Energy Particle instrument for ion (HEP-ion), and Energetic Neutrals Analyzer (ENA).

Although the MOSIF (MMO Sunshield and Interface Structure) blocked most of the MPPE sensor's field of view during cruising phase, the MPPE sensors except HEP-ion were turned on in order to observe Mercury's magnetosphere during the 4th and 6th Mercury flybys. During Mercury flyby #4, MIA observed heavy ion pickup-like signatures outside magnetosphere both at inbound and outbound magnetopause. MSA observed asymmetric (north-south/dawn-dusk) ions including cold and energetic heavy planetary ions. During Mercury flyby #6, MEA observed a lot of sub-structures above the poles in 'auroral' regions. MSA detected Heavy ion dispersion signatures in the central plasma sheet region. They are interpreted as the consequence of sporadic proton injection and planetary ion injections leading to ion bouncing near Mercury. ENA observed natural ENA following the first natural ENA observation during Mercury flyby #2.

The observation with full performance of MPPE will start after Mio's arrival at Mercury in November 2026.

BepiColombo/Mio 衛星は、2026年11月に約8年の水星への旅を経て、目的地である水星に到着する予定であり、現在までに、BepiColombo は6回の水星フライバイを完了した。第1回、2回、3回、4回、6回のフライバイは、2021年10月1日、2022年6月23日、2023年6月19日、2024年9月4日、2025年1月8日であった。第4回目のフライバイの際、BepiColombo は水星磁気圏に、水星磁気圏尾部の北側・夕方側から近づき、朝側の赤道付近で再接近高度165kmで低高度領域を通過した後、朝側の南半球で磁気圏から出た。第6回目のフライバイの際は、BepiColombo は、磁気圏尾部に南側から近づき、水星磁気圏の殆ど真昼—真夜中を含む面内を再接近高度295kmの軌道に沿って飛行した後、昼側の北半球で磁気圏から出た。

MPPE(Mercury Plasma/Particle Experiment) は BepiColombo/Mio 衛星に搭載されたプラズマ、高エネルギー粒子、高速中性粒子の総合観測を行うための観測装置である。MPPE は2台の低エネルギー電子エネルギー分析器 (MEA1, MEA2)、低エネルギーイオンエネルギー分析器 (MIA)、低エネルギーイオンエネルギー質量分析器 (MSA)、高エネルギーイオン観測器 (HEP-ion)、高エネルギー電子観測器 (HEP-ele)、低エネルギー中性粒子分析器 (ENA) の7つのセンサーで構成されている。

水星に到着するまでの間、MOSIF と呼ばれる太陽光シールドが MPPE センサーの視野の殆どをブロックしているが、第4回、第6回のフライバイ時には、HEP-ion を除く全ての MPPE のセンサーが水星磁気圏の観測を行った。

第4回のフライバイ時には、MIA は磁気圏の外でピックアップされたと考えられる重イオンを磁気圏に入る時と出る時の両方で観測した。一方 MSA は、低いエネルギーと高いエネルギーの重イオンが、水星磁気圏中に南北非対称・朝夜非対称に存在していることを観測した。

第6回のフライバイ時には、MEA は、極地方のオーロラ領域上空で、複雑な電子分布の構造を観測した。MSA は、

プラズマシートの中央部で速度分散を持った重イオンが複数回繰り返して検出される現象を観測した。これらは、プロトンと水星起源の重イオンが、短かい期間にインジェクションされた後、磁力線に沿って運動し、水星近傍で反射されて複数回バウンスした結果観測されたと解釈している。また、ENA は第 2 回目のスイングバイ時に続いて、自然の高速中性粒子を観測することができた。

MPPE は、2026 年 11 月の水星磁気圏到着後、本来の高性能を発揮した観測を開始する予定である。