

イオノゾンデ受信機網によるスパラディック E 層の水平構造と水平移動の観測

#古城 侑季¹⁾, 齊藤 昭則¹⁾, 西岡 未知²⁾, 前野 英生²⁾, 近藤 巧²⁾, 安藤 慧²⁾

(¹ 京都大・理・地球物理, ² 国立研究開発法人情報通信研究機構)

Horizontal structures and movements of sporadic E layers observed with ionosonde receiver network

#Yuki Kojo¹⁾, Akinori Saito¹⁾, Michi Nishioka²⁾, Hideo Maeno²⁾, Takumi Kondo²⁾, Satoshi Andoh²⁾

(¹Department of Geophysics, Graduate School of Science, Kyoto University, (²National Institute of Information and Communications Technology

The sporadic E (Es) layer is a dense plasma layer that sporadically appears in the ionospheric E-region, around 90 – 130 km altitude. Its formation and transport are strongly influenced by neutral winds. In particular, vertical shears of zonal winds cause convergence of metallic ions, leading to the formation of Es layers, which are considered to be horizontally transported by background winds. In recent years, studies on the horizontal structures and movements of Es layers using total electron content (TEC) observations have progressed. However, since only high-density Es layers can be detected by TEC, ionosonde observations, which can continuously detect Es layers, are effective for investigating their typical behavior, including lower-density cases. Conventional ionosonde networks, however, are too widely spaced to detect the horizontal structures and movements of Es layers.

To overcome this limitation, we installed new ionosonde receivers in Kyushu, Japan, and established an observation network with horizontal scales that enable monitoring of horizontal movements of Es layers. In June 2023, the receivers were installed at Aso and Miyazaki. By receiving HF signals transmitted from the Yamagawa ionosonde, we conducted oblique observations of Es layers at the midpoints of the Yamagawa – Aso (190 km) and Yamagawa – Miyazaki (100 km) paths. The distance between Aso and Miyazaki is 125 km, and this observation network enables tristatic observation with horizontal scales of about 50 – 100 km. Subsequently, additional receivers were installed at Beppu (245 km from Yamagawa) in July 2024 and at Kochi (307 km from Yamagawa) in March 2025, extending the horizontal scale of the observation network to about 150 km. This expansion improved the ability to detect horizontal movements faster than 100 m/s, and enabled the investigation of larger-scale horizontal structures of Es layers. In this study, we present the results of analyses of horizontal movements and structures of Es layers observed by this five-station network at Yamagawa, Miyazaki, Aso, Beppu, and Kochi, and discuss their formation and transport by neutral winds.

スパラディック E (Es) 層は、高度約 90 – 130 km の電離圏 E 領域に突発的に現れる高密度プラズマ層であり、その形成や輸送には中性風が大きく関与している。特に東西風の鉛直シアによる金属イオンの集積が Es 層の形成の主要因とされ、形成された Es 層は中性風にドリッギングされて水平移動することが知られている。近年は TEC 観測による Es 層の水平構造や水平移動の研究が進んでいるが、TEC で観測される Es 層は高密度のものに限られるため、低密度の Es 層を含めた典型的な挙動について調べるために、定常的に Es 層が検出可能なイオノゾンデ観測が有効である。しかし、従来のイオノゾンデ観測地点の間隔は広く、Es 層の水平構造や移動を検出することは難しかった。

そこで我々は、九州地方に新たにイオノゾンデ受信機を設置し、Es 層の水平観測が可能な水平スケールの観測網を構築した。2023 年 6 月に阿蘇・宮崎に受信機を設置し、山川イオノゾンデからの HF 波を受信することで、山川-阿蘇 (190 km)、山川-宮崎 (100 km) の中点上空の Es 層を斜め観測した。阿蘇-宮崎間は 125 km であり、この観測網により水平スケール約 50 – 100 km の 3 点観測を実現した。さらに、2024 年 7 月に別府 (山川から 245 km)、2025 年 3 月に高知 (山川から 307 km) に受信機を追加し、観測網の水平スケールを最大約 150 km まで拡大した。これにより、100 m/s 以上の移動の検出や、広域的な Es 層の水平構造の把握が可能となった。本研究では、山川・宮崎・阿蘇・別府・高知の 5 地点からなる観測網を用いた Es 層の水平移動および構造解析の結果を示し、Es 層の形成過程や中性風による輸送過程について議論する。