

## オーロラトモグラフィ法を用いた Westward Traveling Surge の解析

#星野 大羽<sup>1)</sup>, 田中 良昌<sup>2)</sup>, 小川 泰信<sup>3)</sup>, 西山 尚典<sup>2)</sup>, 細川 敬祐<sup>4)</sup>, Kirsti Kauristie<sup>5)</sup>, Alexander Kozlovsky<sup>6)</sup>, Tero Raita<sup>6)</sup>  
<sup>(1)</sup> 総研大, <sup>(2)</sup> 国立極地研究所, <sup>(3)</sup> 情報・システム研究機構, <sup>(4)</sup> 電気通信大学, <sup>(5)</sup> フィンランド気象研究所, <sup>(6)</sup> ソダンキラ地  
球物理観測所

### Analysis of Westward Traveling Surge Using the Aurora Tomography Method

#Tau Hoshino<sup>1)</sup>, Yoshimasa TANAKA<sup>2)</sup>, Yasunobu OGAWA<sup>3)</sup>, Takanori NISHIYAMA<sup>2)</sup>, Keisuke HOSOKAWA<sup>4)</sup>, Kau-  
ristie Kirsti<sup>5)</sup>, Kozlovsky Alexander<sup>6)</sup>, Raita Tero<sup>6)</sup>

<sup>(1)</sup>The Graduate University for Advanced Studies, <sup>(2)</sup>National Institute of Polar Research, <sup>(3)</sup>Research Organization of Information and Systems, <sup>(4)</sup>The University of Electro-Communications, <sup>(5)</sup>Finnish Meteorological Institute, <sup>(6)</sup>Sodankyla Geophysical Observatory, University of Oulu

Auroras occur when charged particles precipitating from the Earth's magnetosphere collide with the upper atmosphere, exciting atmospheric constituents and producing light emissions. The aurora follows a characteristic development process known as an auroral substorm. During a substorm, the aurora expands explosively both poleward and in the east – west direction. Among these, the expansion particularly toward the west is called the Westward Traveling Surge (WTS). WTS is the most prominent phenomenon of a substorm, and its development has been discussed within various models. However, the expansion and propagation speed of WTS is as fast as  $\sim 1$  km/s, and no observational studies to date have investigated the spatiotemporal evolution of its three-dimensional structure. The primary reason is that imaging from a single observation site provides only brightness projected onto a plane, while radar observations yield information only along specific lines of sight.

In this study, we aim to quantitatively examine the three-dimensional structure of WTS, as well as the horizontal distribution of precipitating electron energy, using the generalized aurora tomography method [1]. Aurora tomography applies the principles of computer tomography to reconstruct the three-dimensional auroral structure from multiple simultaneous images captured at different observation sites. This enables quantitative discussion of physical quantities such as electron density distribution and conductivity distribution in WTS from an observational perspective. The validity of the reconstructed electron density distribution can be verified by direct comparison with measurements obtained from the EISCAT radar. As a future objective, we aim to extend the discussion to include the three-dimensional current system of WTS and its consistency with theoretical models.

In this presentation, we report the results of tomography analysis applied to auroral image data at 427.8 nm wavelength obtained from Tromsø (69.58° N, 19.23° E), Abisko (68.36° N, 18.82° E), and Kilpisjärvi (69.05° N, 20.36° E) for a WTS event observed at 22:45:34 UT on February 16, 2018. We present the reconstructed three-dimensional structures and precipitating electron energy distributions, and also discuss future perspectives.

[1] Y. Tanaka et al., Ann. Geophys., 29, 551 (2011).

オーロラ現象は、地球周辺の磁気圏から降り込んできた荷電粒子が超高層大気と衝突することで、大気が励起・発光する現象である。オーロラには典型的な発達過程があり、これをオーロラサブストームと呼ぶ。サブストームでは、オーロラは爆発的に極方向および東西へ拡大する。このうち特に西側に拡大する現象を Westward Traveling Surge (WTS) と呼ぶ。WTS はサブストームの最も顕著な現象であり、発達過程について様々なモデルで議論されている。一方で、WTS の拡大・伝播速度は約 1km/s と速く、観測的に 3 次元構造の時空発展を調べた研究はこれまで無い。1 観測点の画像データからだけでは平面に射影された明るさしか分からず、レーダーではある特定の視線方向に関する情報しか得られないことが主な理由である。

そこで本研究は、一般化オーロラトモグラフィ法 [1] を用いて WTS の 3 次元構造、並びに降下電子のエネルギーの水平分布を定量的に議論することを目的とする。オーロラトモグラフィ法とは、コンピュータトモグラフィの手法を利用して、異なる観測点で同時に撮影された複数のオーロラ画像からオーロラの 3 次元構造を復元する手法である。これにより、WTS における電子密度分布や電気伝導度分布といった物理量について、観測的な観点からの定量的な議論が可能になることが期待される。電子密度分布については、EISCAT レーダーによる測定値と直接比較することで、トモグラフィによる再構成結果の妥当性を確かめることができる。将来的な目標としては、WTS の 3 次元電流系についてやモデルとの整合性についても議論可能にすることを設定している。

本発表では、2018 年 2 月 16 日 22:45:34UT に撮影された WTS イベントを、Tromsø (69.58° N, 19.23° E), Abisko (68.36° N, 18.82° E), Kilpisjärvi (69.05° N, 20.36° E) から 427.8nm 波長で撮影した画像データに対してトモグラフィ解析を行い、得られた 3 次元構造や降下電子エネルギー分布を報告する。加えて、今後の展望についても議論する。

[1] Y. Tanaka et al., Ann. Geophys., 29, 551 (2011).