

R003-01

D 会場 : 11/25 AM1 (9:15-10:45)

9:15~9:30:00

3次元節点変位を用いたアダプティブ六面体有限要素法によるCSEMモデリングと熱水系の変動解析への応用

#北岡 紀広¹⁾, 小川 康雄^{1,2)}, Caldwell T. Grant³⁾, 石須 慶一⁴⁾, 南 拓人⁵⁾, Kirkby Alison³⁾

(¹ 東京科学大学, ² 東北大学, ³Earth Sciences New Zealand, ⁴ 九州大学, ⁵ 神戸大学)

An Adaptive Hexahedral FEM with 3D Nodal Displacement for CSEM Modeling and Its Application to a Hydrothermal System

#Norihiro Kitaoka¹⁾, Yasuo Ogawa^{1,2)}, T. Grant Caldwell³⁾, Keiichi Ishizu⁴⁾, Takuto Minami⁵⁾, Alison Kirkby³⁾

(¹Institute of Science Tokyo, ²Tohoku University, ³Earth Sciences New Zealand, ⁴Kyushu University, ⁵Kobe University)

The Finite Element Method (FEM) is a powerful tool for 3D electromagnetic modeling in geophysical exploration methods such as CSEM and MT. To balance computational cost and accuracy, adaptive FEM techniques using octree-based mesh refinement have been developed. While both tetrahedral and hexahedral elements are used, hexahedral elements are often preferred for their ability to align with geological layers and maintain numerical stability. However, previous hexahedral adaptive FEM approaches have primarily been limited to vertical nodal displacement for representing complex topography and have used linear approximations for the transfer function at the boundaries, which can pose challenges in accurately modeling finite-length sources and suppressing artificial reflections.

In this study, we significantly extend this methodology to overcome these limitations. First, we have developed a new hexahedral adaptive mesh generation technique that incorporates full 3D nodal displacement. This allows for the high-fidelity representation of complex features such as finite-length CSEM sources and lake bathymetry without sacrificing mesh quality. The 3D mesh deformation is achieved through a two-step process: we first calculate 2D displacements on the surface mesh to match target features using a non-linear FEM, and then compute the full 3D displacements after incorporating elevation data. Second, we have implemented an improved boundary condition using a transfer function composed of a superposition of exponential functions ($\exp(\pm ikx)$). This condition simulates an outgoing wave, effectively minimizing artificial reflections from the model boundaries. Compared to the conventional Dirichlet boundary condition, our approach achieves high accuracy over a wider area of the computational domain, even with a smaller model space.

In this presentation, we will first validate our new code by comparing its numerical results with the analytical solution for a finite-length dipole CSEM source. We will then present a key application of the code to the continuous CSEM data acquired at Inferno Crater Lake, New Zealand, in 2023. This site is known for its vigorous 40-day cycle of water level and temperature fluctuations, suggesting dynamic subsurface processes. We use our forward modeling to quantitatively interpret the observed resistivity variations that are synchronized with the lake's cycle, and discuss the implications for the dynamics of the shallow high-resistivity layer, interpreted as a vapor-dominated zone.

CSEM法やMT法など3次元電磁探査の電磁場計算において、有限要素法(FEM)は複雑な地下構造をモデル化するための強力なツールである。特に、計算コストと精度の両立を目指し、八分木構造でメッシュを局的に細分化するアダプティブFEMが開発されてきた。そのメッシュ要素には四面体と六面体があるが、六面体要素は層状構造の表現に優れ、数値的な安定性も高いことから、地質学的モデルとの親和性が高い。しかし、従来の六面体アダプティブFEMでは、地形などの複雑な形状を表現するために鉛直方向のみの節点変位に限定された手法や、伝達関数を線形近似する手法が主流であり、有限長の電流源や急峻な地形の表現、計算領域の境界での人工的な反射波の抑制に課題があった。

本研究では、これらの課題を克服するため、手法を大幅に拡張した。第一に、水平方向を含む任意の3次元節点変位を許容する六面体アダプティブメッシュ生成手法を開発した。これにより、送信ダイポールや湖底地形といった複雑な形状を、メッシュの品質を損なうことなく忠実にモデルへ組み込むことが可能となった。このメッシュ変形は、まず八分木分割された空間の地表面メッシュに対し、非線形有限要素法を用いて目標形状に合わせた2次元的な変位を計算し、その後、標高情報を加えて3次元空間全体の変位を計算するという、2段階のプロセスで実現した。第二に、計算領域の境界条件として、波動が計算領域の外側へ透過していく物理的状況を模擬するため、指数関数型($\exp(\pm ikx)$)の伝達関数を導入した。これは人工的な反射波の発生を効果的に抑制し、従来のディリクレ境界条件に比べて、より狭い計算領域でも解析解と広範囲で一致する高精度な計算を可能にする。

本発表では、まず開発したコードの精度を検証するため、有限長ダイポールソースによるCSEM法の解析解と計算結果を比較し、その有効性を示す。さらに、このコードを2023年にニュージーランド・インフェルノ火口湖で取得されたCSEM連続観測データに適用した結果を報告する。この湖では約40日周期の活発な水位・水温変動が観測されており、地下の蒸気卓越層のダイナミクスが示唆されている。我々の観測で捉えられた湖水位変動と同期した比抵抗変動を、開発したフォワードモデリングを用いて定量的に説明し、その変動を引き起こす蒸気卓越層の厚さや形状の変化について議論する。