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The space plasma environment, extending from the Sun to the magnetosphere-ionosphere-atmosphere, includes regions
of frozen conditions, zones of anomalous resistance caused by electromagnetic turbulence, interconnected regions charac-
terized by weakly ionized gas systems in strong magnetic fields, coupled neutral-atmosphere chemical processes, and pure
neutral-atmosphere collision systems. Owing to their complex interactions, an inclusive understanding and forecasting of
the space environment remains an elusive goal, even with the advancements in high-performance instrumentation and in-situ
observation of satellites. Therefore, it is imperative to develop space plasma simulations capable of providing comprehensive
insights, ranging from local spatial domains to the global schematic.

Historically, the development of space plasma simulations has been constrained by computational time, memory capacity,
and data storage limitations, resolving complex phenomena with restricted physics at local space scales.

In recent years, advances in quantum computing, both software and hardware, have demonstrated numerous advantages
of quantum algorithms, such as those represented by (e.g. Shor [1994]). Following Google’s achievement of quantum
supremacy in 2019 (Arute et al., [2019]), the pragmatic implementation of quantum computing in plasma simulation, weather
forecasting, fluid simulation, and various fields is attracting interest. Among them, the quantum lattice Boltzmann method is
constructed by considering the streaming operation as Quantum Walk(Aharonov et al., [1993])(Succi et al., [2015]). Then
Todorova et al. developed a quantum algorithm for the collisionless Boltzmann equation using the discrete velocity method,
describing propagation in discrete real space and discrete velocity space with quantum walks (Todorova and Steijl, [2020]).

We have improved the quantum algorithms presented at JpGU2023(Higuchi, et al.,[2023]) and developed a quantum
algorithm for the 6D Boltzmann-Maxwell equations for collisionless plasmas without the uniform velocity condition and
the vacuum condition in Maxwell’s equations. By implementing a quantum algorithm that computes the velocity moment
into (Higuchi, et al.,[2023]), the collisionless Boltzmann-Maxwell system becomes self-consistent as a simulator. Thus, our
simulator obtains MHD quantities based on the Boltzmann equation. In other words, it can be called a quantum algorithm
for the MHD equation using the Boltzmann method. Furthermore, although there was a measurement problem of the 6D
distribution function on the side (Higuchi, et al.,[2023]), this problem was solved by obtaining 3D MHD quantities.

In this presentation, we will explain the above quantum algorithm, compare quantum numerical results to classical results,
and discussed with those, with a view to the future.
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