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Estimation of plasma parameters by deep learning based on physical laws
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In general the data observed in space and laboratory is only a part of the physical quantities which are needed to understand a
physical phenomenon. In recent years, the machine learning technique has been intensively investigated to predict the physical
parameters from a small number of observed parameters. In the method called Physics-Informed Neural Network (PINN),
the spatio-temporal evolution of some physical parameters is learned as a training data and the other unknown parameters are
estimated so that they satisfy the governing equations [1]. Unlike the conventional parameter prediction technique such as
a pattern recognition, this method predicts a parameter based on the law in physics. Therefore, the prediction model is less
likely to become a black box and a physical interpretation of the predicted data becomes clearer. Furthermore, in contrast to
usual numerical simulation in which one has to solve a forward problem, this method has an advantage to be able to predict
parameters without setting initial and boundary conditions.

In this study, the PINN is applied to Magnetohydrodynamics (MHD) phenomena. The MHD model considerably helps
to understand various plasma phenomena in space and laboratory. We treat the MHD equations as the governing equations
in the PINN and predict the spatio-temporal evolution of plasma parameters from the observed spatio-temporal training data
sets of the magnetic fields and some plasma parameters. Firstly, this method is applied to the MHD shock tube problem to
predict the evolution of the density, the velocity, and the pressure of a plasma from the training data set of the magnetic fields.
When this method is established, the PINN is expected to make a significant contribution to understand MHD phenomena as
a new parameter determination method. In this talk, we report the development status of the prediction model and discuss its
future prospects.

[1]M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning
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