S001-05 A 会場 : 11/4 PM1 (13:45-15:30) 14:55~15:10 ## 高強度レーザー駆動多種イオンプラズマ中の無衝突静電衝撃波によるイオン加速 #坂和 洋一 ¹⁾, Ishihara Hiroki¹⁾, Kuramoto Otono¹⁾, Matsumoto Yusiro¹⁾, Egashira Syunsuke¹⁾, Ota Masato¹⁾, Pikuz Tatiana¹⁾, Ninami Takumi¹⁾, Sakai Kentaro¹⁾, Kuramitsu Yasuhiro¹⁾, Morace Alessio¹⁾, Abe Yuki¹⁾, Arikawa Yasunobu¹⁾, Fujioka Shinsuke¹⁾, Sano Takayoshi¹⁾, Kumar Rajesh¹⁾, Morita Taichi²⁾, Kanasaki Masato³⁾, Fukuda Yuji⁴⁾, Ohira Yutaka⁵⁾, Dohl Leonard⁶⁾, Woolsey Nigel⁶⁾, Ryazantsev Sergey⁷⁾ (1 大阪大学,(2 九州大学,(3 神戸大学,(4 関西光科学研究所,(5 東京大学,(6 York Univ UK,(7 Russian Academy of Sciences ## High-intensity laser driven ion acceleration by collisionless electrostatic shock in a multicomponent ion plasma #Youichi Sakawa¹⁾, Hiroki Ishihara¹⁾, Otono Kuramoto¹⁾, Yusiro Matsumoto¹⁾, Syunsuke Egashira¹⁾, Masato Ota¹⁾, Tatiana Pikuz¹⁾, Takumi Ninami¹⁾, Kentaro Sakai¹⁾, Yasuhiro Kuramitsu¹⁾, Alessio Morace¹⁾, Yuki Abe¹⁾, Yasunobu Arikawa¹⁾, Shinsuke Fujioka¹⁾, Takayoshi Sano¹⁾, Rajesh Kumar¹⁾, Taichi Morita²⁾, Masato Kanasaki³⁾, Yuji Fukuda⁴⁾, Yutaka Ohira⁵⁾, Leonard Dohl⁶⁾, Nigel Woolsey⁶⁾, Sergey Ryazantsev⁷⁾ ⁽¹Osaka Univ, ⁽²Kyushu Univ, ⁽³Kobe Univ, ⁽⁴Kansai Photon Science Institute, ⁽⁵Univ Tokyo, ⁽⁶York Univ UK, ⁽⁷Russian Academy of Sciences Shock waves observed in astrophysical systems, for example, supernova remnant shock and the bow shock of the earth, are shocks in collisionless plasmas. Such collisionless shocks are the most promising candidate for the generation mechanism of cosmic-rays. The interaction between the electric and magnetic fields, generated by the collective phenomenon of plasma, and charged particles is important for the generation of collisionless shocks. By using a high-intensity laser, an acceleration mechanism called ion acceleration by a laser-driven collisionless electrostatic shock is drawing attention [1-4]. In the collisionless electrostatic shock ion-acceleration (CESA), upstream ions of the shock are reflected by the shock potential and accelerated. The CESA experiments are performed with high-intensity LFEX laser beams (pulse width = 1.5 ps, energy \sim 300 J, laser intensity \sim (3-6)x10¹⁹ W/cm², and normalized laser intensity $a_0\sim$ 2) at the Institute of Laser Engineering, Osaka University. In order to generate an initial plasma with a near-critical density and a long scale-length on the rear-side of the drive-laser irradiated target, which is suitable for CESA [2-4], the rear surface of the target is irradiated with an ionization laser at 2.5 ps before the drive laser. As the ionization laser, one of the Gekko XII laser beams (pulse width = 1.3 ps, energy \sim 3 J, laser intensity \sim 3x10¹¹ W/cm²) is focused on the back surface of the target (a thin foil of C₈H₇Cl with a thickness of 1 μ m). Thomson parabola spectrometer (TPS) and electron spectrometer (ESM), located on the rear-side of the target, are used to measure ion and electron spectrum, respectively. We observed clear evidences for the proton acceleration by the collisionless electrostatic shock. - [1] D. Haberberger, et al, Nature Phys. **8**, 95 (2012). - [2] R. Kumar, Y. Sakawa, et al, Phys. Rev. Accel. Beams 22, 043401 (2019). - [3] R. Kumar, Y. Sakawa, et al, Phys. Rev. E 103, 043201 (2021). - [4] Y. Sakawa, Y. Ohira, et al, Phys. Rev. E 104, 055202 (2021).