R005-P22 ポスター3:11/6 AM1/AM2 (9:00-12:30) #津田 卓雄 $^{1)}$, 三好 勉信 $^{2)}$, 穂積 裕太 $^{3)}$, 安藤 芳晃 $^{1)}$, 細川 敬祐 $^{1)}$, 鈴木 秀彦 $^{4)}$, 村田 健史 $^{3)}$, 中村 卓司 $^{5)}$, Yue Jia $^{6)}$, Nielsen Kim $^{7)}$ ⁽¹⁾ 電通大,⁽²⁾ 九大・理・地球惑星,⁽³⁾ 情報通信研究機構,⁽⁴⁾ 明治大,⁽⁵⁾ 極地研,⁽⁶⁾NASA Goddard Space Flight Center,⁽⁷⁾Utah Valley University,⁽⁸⁾Utah Valley University ## Variations in polar mesospheric clouds observed by Himawari-8/AHI #Takuo Tsuda¹⁾, Yasunobu Miyoshi²⁾, Yuta Hozumi³⁾, Yoshiaki Ando¹⁾, Keisuke Hosokawa¹⁾, Hidehiko Suzuki⁴⁾, Ken T. Murata³⁾, Takuji Nakamura⁵⁾, Jia Yue⁶⁾, Kim Nielsen⁷⁾ ⁽¹UEC, ⁽²Dept. Earth & Planetary Sci, Kyushu Univ., ⁽³NICT, ⁽⁴Meiji univ., ⁽⁵NIPR, ⁽⁶NASA Goddard Space Flight Center, ⁽⁷Utah Valley University, ⁽⁸Utah Valley University, ⁽⁹Utah Valley University) To advance polar mesospheric cloud (PMC) observations by Advanced Himawari Imager (AHI) onboard the Japanese geostationary-Earth-orbit (GEO) meteorological satellite Himawari-8, we have developed a PMC detection method for application to the Himawari-8/AHI full-disk images. The PMC detection method consists of two steps: detection in stronger PMC signals in the first step and detection in weaker PMC signals in the second step. By using this two-step detection, we eliminate false detections as much as possible and enhance detection sensitivity. As a result, the PMC detection sensitivity by Himawari-8/AHI is well comparable to that by Cloud Imaging and Particle Size (CIPS) onboard Aeronomy of Ice in the Mesosphere (AIM). By analyzing the detected PMC data, various PMC variations such as quasi 5-day waves and mid-latitude extensions can be revealed. Among the variations, we focus on interhemispheric coupling, specifically a relationship between PMC occurrence rates in the summer hemisphere and sudden stratospheric warmings in the winter hemisphere.