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Evaluation of the efficiency of the mid-IR laser heterodyne spectrometer using hollow fibers
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The mid-IR laser heterodyne spectroscopy provides high spectral resolution > 10°, which is much greater than other
direct spectroscopic measurements, by combining an IR source from the observing target and an IR laser, such as a
quantum cascade laser (QCL) and/or a CO; gas laser, as the local oscillator (LO). We have developed the mid-infrared
laser heterodyne spectrometer MILAHI (Mid Infrared LAser Heterodyne Instrument) mounted on our dedicated
Tohoku 60 cm telescope (T60) at the summit of Mt. Haleakala, Hawaii, which has successfully operated for
measurements of Venusian and Martian atmosphere (Nakagawa et al., 2016, Takami et al., 2020).

The two beams are combined at the ZnSe beam splitter and then focused onto a HgCdTe photomixer. A precise optical
alignment is required to combine two beams. Since the observable wavelength of a single feedback (FB)-QCL is
restricted in the range of several cm’!, switching LOs is needed in order to observe various molecular lines. A CO, gas
laser covers some parts of the wavelength ranges of 9-12 um and four QCLs provide the wavelength ranges of 7.43-
744 pm, 7.71-7.73 pm, 9.54-9.59 pum, 10.28-10.33 pum are installed in MILAHI as LOs. A smooth switching
mechanism of LOs is essential for applications of planetary atmosphere. In this study, we aim to simplify the optics,
especially to provide a switching mechanism of LOs, by applying mid-IR transmissive hollow fibers.

There is few optical fiber which has a high transmittance at the wavelengths longer than 2 g m. Recently mid-IR (5-
20 pm) transmissive hollow fibers has been developed by Tohoku University (e.g. Matsuura et al., 2002). The fibers
are made of glass tubing whose inner diameter are 1 mm and have a metallic layer of Ag on the inside of glass tubing
and then a dielectric layer of Agl over the metallic layer. Transmittance of 95 %/m at 10.6 x m was reported in previous
studies (e.g. George and Harrington, 2004), meanwhile we have achieved about 70% transmittance with a 300 mm
hollow fiber at 10.4 um from our laboratory measurements. Transmittance of hollow fibers strongly depends on its
incident angle of the light. Better transmittance might be possible by improving the alignment.

In this study, we evaluate the efficiency of the heterodyne signal using hollow fibers. The following two systems are
compared for verifications using a CO; gas laser which emits IR at 10.6 g m as a LO and a small blackbody furnace as
an IR source.

(i) a conventional system combines two beams using a beam splitter without any fibers
(ii) a fiber system using 300 mm hollow fibers to guide two beams and combines them by a conventional beam splitter

In addition, we have developed the technology related to the fiber coupler and divider (a device enables coupling or
splitting lights by combining fibers directly) for the hollow fibers (Tamura et al., 2017) and we will test the efficiency
of the heterodyne signal using the fiber coupler. The fiber coupler can provide downsizing, weight saving, high
stabilization of the instrument, which are essential to develop the instrument for space-born missions.
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