惑星間空間磁場BY誘発シータオーロラに付随する単極性沿磁力線電流の観測 # 渡辺 正和 [1]; Wilson Gordon[2]; Hairston Marc R[3] [1] 九大・理・地惑; [2] AFRL; [3] UTD ## Observation of unipolar field-aligned currents associated with interplanetary magnetic field BY triggered theta auroras # Masakazu Watanabe[1]; Gordon Wilson[2]; Marc R Hairston[3] [1] Earth & planetary Sci., Kyushu Univ.; [2] AFRL; [3] UTD It has been suggested that there are several mechanisms for theta aurora formation. One mechanism that is generally accepted is the one associated with interplanetary magnetic field (IMF) BY transition. When the sign of IMF BY switches during strong northward IMF, in the ionosphere, the duskside or dawnside plasma sheet is detached and the isolated plasma sheet drifts dawnward or duskward into the polar cap to form the theta aurora configuration [Cumnock et al., 1997; Chang et al., 1998; Kullen et al., 2002]. This formation process of the theta aurora is supported by global magnetohydrodynamic (MHD) simulations [Slinker et al., 2001; Kullen and Janhunen, 2004; Naehr and Toffoletto, 2004; Tanaka et al., 2004]. Watanabe et al. [2014], using MHD simulation, showed possible existence of a unipolar field-aligned current (FAC) system within the crossbar of the theta aurora. When the theta aurora is drifting duskward, the FACs are located on the dawnside boundary of the crossbar adjacent to the 'new' lobe and they flow into the ionosphere. This unipolar FAC system drives nightside part of the round cell that causes the drift motion of the theta aurora crossbar. To the best of our knowledge, there has been no previous report on such a unipolar FAC system. The purpose of this paper is observational verification of the simulation results, using magnetic field and precipitating particle data obtained by DMSP satellites. On 24 October 2003, a well-defined stepwise change in IMF BY during strong (about 20 nT) northward IMF periods triggered a theta aurora. We confirmed from the DMSP data the presence of the very FAC system predicted by the Watanabe et al. [2014] MHD simulation. ## References Chang et al., (1998), J. Geophys. Res., 103(A8), 17,367-17,390, doi:10.1029/97JA02255. Cumnock et al. (1997), J. Geophys. Res., 116, A02218, doi:10.1029/2010JA015912. Kullen and Janhunen (2004), Ann. Geophys., 22, 951-970. Kullen et al. (2002), J. Geophys. Res., 107(A11), 1362, doi:10.1029/2002JA009245. Naehr and Toffoletto (2004), J. Geophys. Res., 109, A07202, doi:10.1029/2003JA010191. Slinker et al. (2001), Phys. Plasmas, 8(4), 1119-1126. Tanaka et al. (2004), J. Geophys. Res., 109, A09201, doi:10.1029/2003JA010271. Watanabe et al. (2014), J. Geophys. Res., to be published. シータオーロラの成因には様々なものが考えられるが、広く受け入れられているものは惑星間空間磁場(IMF)BY の変動が形成の引き金になるというものである。強い北向き磁場が続いている時に、IMF BY が反転すると朝側あるいは夕側のオーロラオーバルからプラズマシートが分離し、極冠内にドリフトしてシータオーロラを形成する。この形成過程はグローバル電磁流体(MHD)シミュレーションでも再現されている [Slinker et al., 2001; Kullen and Janhunen, 2004; Naehr and Toffoletto, 2004; Tanaka et al., 2004]。Watanabe et al. [2014] は MHD シミュレーションにより、トランスポーラーアークに付随する単極性沿磁力線電流系の存在を示唆した。トランスポーラーアークが夕方にドリフトしていく場合には、沿磁力線電流は朝方の"新"ローブとの境界に現れ、電流の方向は電離圏から出る方向である。逆にトランスポーラーアークが朝方にドリフトしていく場合には、沿磁力線電流は夕方の"新"ローブとの境界に現れ、電流の方向は電離圏へ入る方向である。この単極性の沿磁力線電流は、トランスポーラーアークのドリフトを担うラウンド・セルの夜側部分の駆動源となる。このような単極性の沿磁力線電流の観測は過去に報告されたことはない。本研究は、DMSP衛星の降下粒子と磁場データを用いて、シミュレーション結果の検証を行うものである。2003 年 10 月 24 日、強い(約20 nT)北向き IMF が続いている期間に、階段状に IMF BY の反転が起こり、シータオーロラが形成された。この事象の解析を行い、Watanabe et al. [2014] のシミュレーションで得られた沿磁力線電流系が実在することを確認した。