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Continuous excitation of planetary free oscillations
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[1] Earth and Planetary Sci, Tokyo Tech; [2] Earth & Planet. Sys. Sci., Hiroshima Univ.; [3] ERI, Univ. Tokyo

Ten years have passed since the first report by Nawa et al. (1997) on the continuous excitation of Earth’s free oscillation:
were published. | review the progress in the study of the oscillations and show they play important roles in the future planetary
explorations.

Kobayashi (1996) proposed a mechanism that can continuously excite free oscillations of the earth and planets based on t
excitation theory of solar oscillations. Mars and Venus seem not to have strong plate motions that causes great quakes on tl
planets. Continuous excitation of planetary oscillations by atmospheric turbulence will be important for the exploration of their
interior by a seismological method. After that research groups of Nagoya university and Tokyo Tech had discovered backgroun
free oscillations (e.g. Nawa et al. 1998, Suda et al. 1998, Kobayashi and Nishida 1998). They are the fundamental spheroid
modes from 3 to 8 mHz where the background noises in the ground motions are very quiet, and their amplitudes are about O.
nano galileo. Suda et al. (1998) showed that they cannot be excited by great earthquakes in the global seismic catalogue and sn
earthquakes obeying the Gutenberg-Richiter’s law. Nishida &amp; Kobayashi (1999) and Nishida et al. (2000) showed excitatior
forces must be globally distributed random forces and modes at 3.7 mHz and 4.4 mHz have significantly larger amplitudes tha
those of neighboring modes and their amplitudes show annual variations. The modes just locate at the branch crossings betwe
the fundamental spheroidal mode branch and the lowest two acoustic mode branches, which implicates the excitation sources
the background free oscillations are in the atmosphere. In this point, Kusumi et al. (2008) reported that random forces at 1 kn
of altitudes well explains overall amplitudes of the background free oscillations, larger amplitudes of the coupled modes and the
annual variations due to seasonal changes in the acoustic property of the atmosphere and so the resonance.

However we have still debated whether the excitation sources are in the atmosphere or in the oceans (e.g. Rhie &amj
Romanowicz 2004, Webb 2007). Nishida &amp; Fukao (2007) reported stronger sources are broadly distributed in the norther
Pacific Ocean in winter and in the Indian Ocean in summer although global distribution of sources is also significant. Kurrle
&amp; Windmer (2008) reported that toroidal oscillations are continuously excited too, and Nishida et al. (2008) also reported
that the background Love waves higher 10 mHz has the same energy as the background Rayleigh waves. These tortional wa\
cannot be excited by vertical pressure forces on a flat ground or flat ocean bottom. Fukao et al. (2008) so proposed an excitatic
mechanism that topographic coupling of gravity waves in the oceans radiates Rayleigh and Love waves effciently. The sam
mechanism can be applicable for the gravity waves in the atmosphere and mountain winds. We need further investigation on tt
mechanism in future.

We estimated the continuous excitation of free oscillations of Mars and Venus by atmospheric disturbances and we foun
that we can expect the same amplitudes for the two planets as the earth’s background free osicllations. The background fre
oscillations excited by planetary atmosphere shall play important roles in the future planetary explorations.
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