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Primary component of the basaltic dike intrusion of the Precambrian St. Cloud granitic
rocks in Minnesota, North America
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Reconstruction of the billion-year timescale variation in the geomagnetic field gives a crucial constraint for the study of the core
dynamics, especially the evolution of the geodynamo. The geodynamo is controlled mainly by the Coriolis force and the fluid
convection. There are three possible major energy sources of the core convection: (1) cooling of the core (thermal convection
(2) latent heat released by solidification of the fluid outer core at the inner-core boundary ICB (thermal convection) and (3)
buoyancy of the fluid containing the excessive light material around the ICB due to the exsolution (compositional convection).
Therefore the dynamo evolution has been tightly related to temporary change in the thermal boundary conditions at the cor
mantle boundary (CMB) and ICB, thermal diffusion, the mantle convection and the plate motions including the Wilson Cycle as
the boundary condition at the upper surface of the mantle.

According to the evolution model of the geodynamo based on the thermal history of the Earth (Stevenson et al., 1983), the earl
geomagnetic field after the Earth formation (about 4.5 Ga) was generated by thermal convection in the entire core due to cooling
and gradually attenuated to be almost diminished about 2.5 Ga. When the solid inner core nucleated about 2.5 Ga, composition
convection initiated in the fluid outer core and thus the geomagnetic field recovered up to the high intensity comparative to the
present (about 2.0 Ga). This model can give a scenario of not only the geomagnetic field evolution but also the ancient Martia
magnetic field older than 4.2 Ga found by the recent planetary exploration. Therefore it is regarded as a working hypothesi
examined by the Archean and Protrozoic paleomagnetism. Since such an evolution model depends greatly on uncertainty
parameters, the initiation age of the inner core growth does not exactly correspond to 2.5 Ga, and therefore the paleomagne
study should be conducted for a wide time range of the Precambrian.

Pre-Tertiary rock samples generally have undergone metamorphism and/or weathering, particularly volcanic rocks. Therefor
we have focused on granitic rocks for pre-Tertiary paleomagnetism because it is not so difficult to collect fresh samples for the
paleomagnetic study. Besides, as the magnetization of granitic rock could average out the secular variation because of its slc
cooling rate, it seems to be suited for the study of a billion-year time scale variation in the geomagnetic field (Wakabayashi et
al., 2006). In measurement of the paleointensity, theoretical correction is applicable to natural remanent magnetization (NRM
intensity if singledomain component is obtained (Tsunakawa et al., 2006; Tarduno et al., 2007). With this in mind, we collected
rock samples of St. Cloud granites in Minnesota, USA, which yields the U-Pb and 40Ar-39Ar radiometric ages of about 1.8 Ga
and a basaltic dike which intruded into St. Cloud granites. The dike intrusion will be also used for the baked contact test of the
host granite. In the present study, we report the preliminary result of detection of the primary component of the basaltic dike.
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